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Abstract: - The different design trajectories have been analyzed in the design space on the basis of the new 
system design methodology. Optimal position of the design algorithm start point was analyzed to minimize the 
computer design time. The initial point selection has been done on the basis of the before discovered acceleration 
effect of the system design process. The geometrical dividing surface was defined and analyzed to obtain the 
optimal position of the algorithm start point. Numerical results of both passive and active nonlinear electronic 
circuit design prove the possibility of the optimal selection of the design algorithm start point. 
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1 Introduction 
The problem of the computer time reduction of a 
large system design is one of the essential problems 
of the total quality design improvement. Besides the 
traditionally used ideas of sparse matrix techniques 
and decomposition techniques [1]-[5] some another 
ways were determine to reduce the total computer 
design time. The generalized theory for the system 
design on the basis of control theory formulation was 
elaborated in some previous works [6]-[8]. This 
approach serves for the time-optimal design 
algorithm definition. On the other hand this approach 
gives the possibility to analyze with a great clearness 
the design process while moving along the trajectory 
curve into the design space. The main conception of 
the theory is the introduction of the special control 
functions, which, on the one hand generalize the 
design process and, on the other hand, they give the 
possibility to control design process to achieve the 
optimum of the design objective function for the 
minimum computer time. This possibility appears 
because practically an infinite number of the 
different design strategies that exist within the 
bounds of the theory, but the different design 
strategies have the different operation number and 
executed computer time. On the bounds of this 
conception, the traditional design strategy is only a 
one representative of the enormous set of different 
design strategies. As shown in [8] the potential 
computer time gain that can be obtained by the new 

design problem formulation increases when the size 
and complexity of the system increase but it is 
realized only in case when we have the algorithm for 
the optimal trajectories real construction. We can 
define the formulation of the intrinsic properties and 
special restrictions of the optimal design trajectory as 
one of the first problems that needs to be solved for 
the optimal algorithm construction. 
 
2 Problem Formulation 
The design process for any analog system design can 
be defined [8] as the problem of the generalized 
objective function ( )UXF ,  minimization by 
means of the vector equation: 
 

 s
s

ss HtXX ⋅+=+1       (1) 

 
with the constraints: 
 

 ( ) ( )1 0− =u g Xj j , j M= 1 2, , . . . ,      (2)  

 

where NRX ∈ , ( )XXX ′′′= , , KRX ∈′  is the vector of 

the independent variables and the vector MRX ∈′′  is 
the vector of dependent variables ( MKN += ), 

( )Xg j  for all  j is the system model, s is the 

iterations number, st is the iteration parameter, 
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1Rt s ∈ , H ≡H(X,U) is the direction of the 

generalized objective function ( )UXF ,  decreasing, 
U is the vector of the special control functions 

( )U u u um= 1 2, ,..., , where uj ∈Ω; { }Ω = 0 1; . The 

generalized objective function ( )UXF ,  is defined as: 

( ) ( ) ( )UXXCUXF ,, ψ+=  where ( )XC  is the 
ordinary design process cost function, and 

( )UX ,ψ  is the additional penalty function: 

( ) ( )∑
=

⋅=
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,

ε
ψ . This problem formulation 

permits to redistribute the computer time expense 
between the problem (2) solve and the optimization 
procedure (1) for the function ( )UXF , . The control 
vector U is the main tool for the redistribution 
process in this case. Practically an infinite number of 
the different design strategies are produced because 
the vector U depends on the optimization current 
step. The problem of the optimal design strategy 
search is formulated now as the typical problem for 
the functional minimization of the control theory. 
The functional that needs to minimize is the total 
CPU time T of the design process. This functional 
depends directly on the operations number and more 
generally on the design trajectory that has been 
realized. The main difficulty of this problem 
definition is unknown optimal dependencies of all 
control functions u j . This problem is the central for 

such a type of the design process definition. 

 
3 Trajectory Analysis 
The problem of the initial point selection for the 
design process is one of the essential problems of the 
time-optimal algorithm construction. The analysis of 
the design process and acceleration effect for the 
simplest electronic circuit of the Fig. 1 was provided 
in [9]. This is the two-dimensional case. 
 

 
 

Fig. 1. Simplest one node circuit. 

The vector of the state variables X has two 

components X x x= ( , )1 2  where 1
2
1 Rx = , 12 Vx = . 

The nonlinear element has the following 
dependency: 10 bVrRn += . Using the Laws of 

Kirchhoff we can obtain the following function g(X):  
 

( ) ( ) 02
1220

2
11 =−++≡ xxbxrxXg      (3) 

 
The objective function is defined by the formula 

( ) ( )C X x kV= −2

2
, where kV  has the fixed value. 

There is only one control function u1 in this case 

because there is only one dependent parameter 2x . 
The design trajectory for this example is the curve in 
two-dimensional space, if the numerical design 
algorithm is applied. 
 The optimization procedure and the electronic 
system model, in accordance with the new design 
methodology [9], are defined by the next two 
equations: 
 

 ( )UXftxx is
s
i

s
i ,1 ⋅+=+

, 2,1=i      (4) 

 
( ) ( ) 01 11 =− Xgu         (5) 

 
where U is the vector of control variables, and the 
components of the movement directions ( )UXf i ,  

for the i =1,2 depend on the optimization method. 
These functions, for the gradient method for 
example, are given by the formulas: 
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where ( )UXF ,  is the generalized objective       

function, ( ) ( ) ( )XguXCUXF 2
11

1
,

ε
+= , ( )X2η  

is the implicit function ( )( )Xx s
2

1
2 η=+  and it 

gives the value of the parameter x2  from the equation 

(5), and the operator 
ixδ
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As shown in [9] we need to select the initial point of 
the design process with the negative coordinate x2 . 
In this case the acceleration process can be realized. 
The family of the design curves for the circuit on 
Fig. 1, which corresponds to the modified traditional 
design strategy (u=1) and the negative initial value 
of the second coordinate (x2<0) of the vector X is 
shown in Fig. 2 for the 2-D phase space. These 
curves have different start points but the same final 
point F. The start points were selected on the circle 
arc and have the different initial coordinates. The 
special curve S-F, which is marked by thick line, is 
the separating curve. This curve separates the 
trajectories that are the candidates for the 
acceleration effect achievement (all curves that lie 
under the curve S-F), and the trajectories that can not 
produce the acceleration effect (curves that lie over 
the curve S-F). It is clear that the projections of the 
final point F to all curves of the first group define the 
switching point of the optimal trajectory, which 
produces the acceleration effect. All curves of the 
first group (1-7) approach to the final point F from 
the left side, and all curves of the second group (9-
16) approach to the final point from the right side. 
The comparison of the relative computer time for all 
curves of the Fig. 2 is shown in Fig. 3. 
 

 
 
Fig. 2. Trajectories of the modified traditional strategy for 
the different start points with the negative coordinate x2. 

 

 
 

Fig. 3. Relative computer timeτ  as the function of the 
curve number n. 

The separating curve S-F has the minimal computer 
time among all of the trajectories. At the same time 
this curve can not be used as the basis for the time-
optimal trajectory construction because the 
projection of the point F to this curve is the same 
point F, but the movement slows down near this 
point. Only the curves that lie under the curve S-F 
serve as the first part of the time-optimal trajectory 
with the following jump to the point F. The relative 
computer timeτ  of the optimal trajectories with 
acceleration effect (on the basis of the curves 1-7, 
Fig. 2) is shown in Fig. 4 as the function of the curve 
number n. The curves 9-16 can be optimized too but 
in this case the time reduction about 10-15% only 
takes place. Fig. 4 shows that the total computer time 
increases when the start point approaches to the 
curve S-F, and on the contrary, the more acceleration 
can be obtained if the start point lies far from the 
curve S-F (from curve 7 to curve 1). So, the start 
point selection with at least one negative initial 
coordinate of the vector X and the value of this 
coordinate that gives the start point position under 
the separating line are the sufficient conditions for 
the acceleration effect appearance.  

More detail analysis shows that the negative value 
of the start point coordinate below the separate line is 
the sufficient condition for the acceleration effect but 
is not the necessary. The phase diagram of Fig. 5 
includes two types of the separate lines. The first line 
AFB separates the trajectories that draw to the final 
point F from the left and from the right. The second 
separate line CTFB divides all the phase space to the 
two subspaces. All the points and trajectories that lie 
inside this separate line can not produce the 
acceleration effect. On the other hand, all the points 
that lie outside the separate line and corresponding 
trajectories produce the acceleration effect. These 
geometrical conditions are the necessary and 
sufficient to obtain the acceleration effect. 
 

 
Fig. 4. Relative computer time τ  of the optimal trajectories with 

acceleration effect as the function of the curve number n. 
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Fig. 5. Phase diagram  x1-x2  for one-node circuit. 
 
 The N-dimensional case has been analyzed below. 
The second example corresponds to the circuit of  
Fig. 6. This circuit has five independent variables as 

admittance 54321 ,,,, yyyyy  (K=5) and four dependent 

variables as nodal voltages 4321 ,,, VVVV  (M=4). 

Non-linear circuit elements have dependencies: 

( )2
21111 VVbay nnn −⋅+= , ( )2

23222 VVbay nnn −⋅+= . 

Non-linearity parameters b bn n1 2,  are equal to 1.0. 
The state parameter vector X includes nine 

components: 1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 4

2
4 yx = , 

5
2
5 yx = , 16 Vx = , 27 Vx = , 38 Vx = , 49 Vx = . The 

system of the optimization process includes nine 
equations and the circuit model includes four 
equations.  
 

 
 

Fig. 6. Four-node circuit topology. 
 

The phase space of the total states parameters has 
nine dimensions. The separate lines are transformed 
to the separate hyper-surfaces in this case. The phase 
projections of the separate hyper-surfaces (separate 
lines one and two), which correspond to the plane   
x5-x9  are shown in Fig. 7. 

 
 

Fig. 7. Phase diagram x5-x9 for four-node circuit. 
 

The region outside the separate line 2 includes the 
points and the trajectories that can produce the 
acceleration effect. In this case, as for the first 
example, the separate line 2 or more general the 
separate hyper-surface 2 defines the necessary and 
sufficient conditions for the acceleration effect 
existence.  
 Active nonlinear circuits are analyzed below. A 
circuit of the transistor amplifier that consists of 
three transistor cells is shown in Fig. 7. The Ebers-
Moll static model of the transistor has been used.   
 

 
 

Fig. 8. Circuit topology for three-cell transistor amplifier. 
 

The one, two and three transistor cell circuits 
were analyzed separately. The one transistor cell 
circuit was analyzed as the first example. In this case 
we have three independent variables 321 ,, yyy  as 

admittance (K=3) and three dependent variables 

321 ,, VVV  as nodal voltages (M=3). The state 

parameter vector X includes six components: 

1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 14 Vx = , 25 Vx = , 

36 Vx = . Fig. 9 corresponds to the trajectory graphs 

of the modified traditional design strategy for three 
above mentioned types of the transistor amplifier. 
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(a) 0
ix =1.0,  i =1,2,…,K (K=3). 

 
 

 
 

(c) 0
ix =2.0,  i =1,2,…,K (K=5). 

 
 

 
 

(e) 0
ix =1.0,  i =1,2,…,K (K=7). 

 

 
 

(b) 0
ix =2.0,  i =1,2,…,K (K=3). 

 
 

 
 

(d) 0
ix =3.0,  i =1,2,…,K (K=5). 

 
 

 
 

(f) 0
ix =2.0,  i =1,2,…,K (K=7). 

 
 

Fig. 9. Family of the curves that correspond to the modified traditional design strategy and separate lines for: 
(a), (b) one-cell; (c), (d) two-cell; and (e), (f) three-cell transistor amplifier. 
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Fig. 9 (a), (b) shows the behavior of the trajectory 
projections in the plane x3 -x6 . Fig. 9 (a) corresponds 

to the initial coordinate values 0
ix =1.0, and Fig. 9 (b) 

to the values 0
ix =2.0 for i=1,2,3. There is a great 

difference between the active and the passive 
circuits. The separate lines 1 and 2 (the projections of 
the corresponding separate hyper surfaces) have a 

very strong configuration for 0
ix =1.0, that explain 

the presence or the absence of the acceleration effect. 
On the contrary, the separate hyper surface 
projections disappear in the plane x3 -x6 for the initial 

values 0
ix =2.0. It means that the acceleration effect 

is observed always, for any value of the coordinate x6 
because all trajectories include the possibility to 
finish point jump. It is very interesting that the circuit 
complication bring to the further expansion of the 
acceleration effect region. We can see this property 
from Fig. 9 (c), (d) and (e), (f). Fig. 9 (c), (d) 
correspond to the two-cell transistor amplifier and 
Fig. 9 (e), (f) to the three cell amplifier. There is a 
significant reduction of the region of the acceleration 
effect absence for two cell amplifier, Fig. 9 (c). The 
projections of the separate hyper surface (separate 
lines 1 and 2) in the plane x5-x10  have the same 
behavior and very narrow region of the acceleration 

effect absence for 0
ix =2.0, i=1,2,3,4,5. The 

acceleration effect always exists for 0
ix =3.0 as we 

can see in Fig. 9 (d). The separate hyper surface 
disappear completely for three cell transistor 
amplifier (Fig. 9 (e), (f)) and we can realize 
acceleration effect practically for all start points and 
for all trajectories. 
 
4 Conclusion 
The initial point selection permits obtain acceleration 
effect with a great probability. The trajectory analysis 
of various design strategies shows that the 
conception of the separate line or the separate hyper 
surface in general case is very helpful to understand 
and define the necessary and sufficient conditions for 
the design process acceleration effect existence. The 
separate hyper surface defines the start points and the 
trajectories that can produce the acceleration effect 
and can be used for the optimal design trajectory 
construction. The selection of the initial points 
outside of the separate hyper surface is the necessary 
and sufficient conditions for the acceleration effect 
existence. 

 The separate hyper surface has the complex 
structure in general case. However, the situation is 
simplified for the active nonlinear circuits because a 
disappearance of the separate hyper surface for more 
complicated circuits. It means that the acceleration 
effect can be realized always for the complex active 
circuits. This effect reduces the total computer time 
additionally and serves as the basis for the optimal or 
quasi-optimal algorithm construction. 
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